e content for students of patliputra university

B. Sc. (Honrs) Part 2 paper 3

Subject:Mathematics

Title/Heading:Groups:Sub group

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

Subgroups

Let n be a positive integer. If a is an element of a group G, written multiplicatively, we denote the product aaa....a for n factors a by a^n . We let a^0 be the identity element. Also, a^{-n} denotes the product $a^{-1}a^{-1}a^{-1}...a^{-1}$ for n factors.

Definition .

If G is a group, then the order |G| of G is the number of elements in G.

Definition

If a subset H of a group G is closed under the binary operation and if H with the induced operation from G is itself a group, then H is a subgroup of G. We denote this by $H \leq G$ or $G \geq H$. Also, H < G or G > H means that $H \leq G$ but $H \neq G$.

Examples

- If G is any group, then the subgroup consisting of G itself is the improper subgroup of G. All other subgroups of G are proper subgroups. The subgroup {e} is the trivial subgroup of G. All other subgroups are nontrivial.
- 2. $\langle \mathbb{Z}, + \rangle < \langle \mathbb{R}, + \rangle$, but $\langle \mathbb{Q}^+, . \rangle$ is not a subgroup of $\langle \mathbb{R}, + \rangle$.
- 3. The n^{th} roots of unity in \mathbb{C} form a subgroup U_n of the group \mathbb{C}^* of non zero complex numbers under multiplication.
- There are two different group structures of order 4. Consider the group table of Z₄.

(In the problem 4 the operation is $+_4$, the addition modulo 4. $a+_4b=r$, the reminder obtained when a+b is divided by 4)

From the table, it is clear that the only proper subgroup of \mathbb{Z}_4 is $\{0,4\}$. Another group structure of order 4 is the group V, the Klein 4-group, which is described by the following table.

Note that V has three proper nontrivial subgroups, $\{e,a\}, \{e,b\}$, and $\{e,c\}$. Theorem

A subset H of a group G is a subgroup G if and only if (i). H is closed under the binary operation of G., (ii). the identity element e of G is in H, (iii). for all $a \in H$ it is true that $a^{-1} \in H$ also.

Theorem

Let G be a group and let $a \in G$. Then $H = \{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a, i.e., every subgroup containing a contains H.

Problem

Show that a non empty subset H of a group G is a subgroup of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

Solution.

Let H be a subgroup of G. Then for $a,b \in H$, we have $b^{-1} \in H$ and $ab^{-1} \in H$ because H must be closed under the induced operation. Conversely, suppose that H is nonempty and $ab^{-1} \in H$ for all $a,b \in H$. Let $a \in H$. Then taking b = a, we see that $aa^{-1} = e$ is in H. Taking a = e, and b = a, we see that $ea^{-1} = a^{-1} \in H$. Thus H contains the identity element and the inverse of each element. For closure, note that for $a,b \in H$, we also have $a,b^{-1} \in H$ and thus $a(b^{-1})^{-1} = ab \in H$.

Problem

Let G be a group and let $H_G = \{x \in G \mid xa = ax, \forall a \in G\}$. Show that H_G is an abelian subgroup of G. (H_G is called the center of G.)

Solution.

Clearly H_G is closed under the operation and $e \in H_G$. From xa = ax, we obtain $xax^{-1} = a$ and then $ax^{-1} = x^{-1}a$, showing that $x^{-1} \in H_G$, which is thus a subgroup. Let $a \in H_G$. Then ag = ga for all $g \in G$; in particular, ab = ba for all $b \in H_G$ because H_G is a subset of G. This shows that H_G is abelian.